mRNAs, proteins and the emerging principles of gene expression control

Gene expression involves transcription, translation and the turnover of mRNAs and proteins. The degree to which protein abundances scale with mRNA levels and the implications in cases where this dependency breaks down remain an intensely debated topic. Here we review recent mRNA–protein correlation studies in the light of the quantitative parameters of the gene expression pathway, contextual confounders and buffering mechanisms. Although protein and mRNA levels typically show reasonable correlation, we describe how transcriptomics and proteomics provide useful non-redundant readouts. Integrating both types of data can reveal exciting biology and is an essential step in refining our understanding of the principles of gene expression control.

This is a preview of subscription content, access via your institution

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

cancel any time

Subscribe to this journal

Receive 12 print issues and online access

206,07 € per year

only 17,17 € per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

OmicScope unravels systems-level insights from quantitative proteomics data

Article Open access 02 August 2024

Quantification of translation uncovers the functions of the alternative transcriptome

Article 29 June 2020

grandR: a comprehensive package for nucleotide conversion RNA-seq data analysis

Article Open access 15 June 2023

References

  1. Abbott, S. & Fairbanks, D. J. Experiments on plant hybrids by Gregor Mendel. Genetics204, 407–422 (2016). PubMedPubMed CentralGoogle Scholar
  2. Lester, G. & Bonner, D. M. The occurrence of beta-galactosidase in Escherichia coli. J. Bacteriol.63, 759–769 (1952). CASPubMedPubMed CentralGoogle Scholar
  3. Jacob, F. & Monod, J. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol.3, 318–356 (1961). CASPubMedGoogle Scholar
  4. Gann, A. Jacob and Monod: from operons to EvoDevo. Curr. Biol.20, R718–R723 (2010). CASPubMedGoogle Scholar
  5. Montgomery, S. B. & Dermitzakis, E. T. From expression QTLs to personalized transcriptomics. Nat. Rev. Genet.12, 277–282 (2011). CASPubMedGoogle Scholar
  6. Koch, L. Genomics: adding another dimension to gene regulation. Nat. Rev. Genet.16, 563 (2015). CASPubMedGoogle Scholar
  7. Bentley, D. L. Coupling mRNA processing with transcription in time and space. Nat. Rev. Genet.15, 163–175 (2014). CASPubMedPubMed CentralGoogle Scholar
  8. Hentze, M. W., Castello, A., Schwarzl, T. & Preiss, T. A brave new world of RNA-binding proteins. Nat. Rev. Mol. Cell Biol.19, 327–341 (2018). CASPubMedGoogle Scholar
  9. Tahmasebi, S., Khoutorsky, A., Mathews, M. B. & Sonenberg, N. Translation deregulation in human disease. Nat. Rev. Mol. Cell Biol.19, 791–807 (2018). CASPubMedGoogle Scholar
  10. Teixeira, F. K. & Lehmann, R. Translational control during developmental transitions. Cold Spring Harb. Perspect. Biol.11, a032987 (2019). CASPubMedPubMed CentralGoogle Scholar
  11. Emmott, E., Jovanovic, M. & Slavov, N. Ribosome stoichiometry: from form to function. Trends Biochem. Sci.44, 95–109 (2019). CASPubMedGoogle Scholar
  12. Schwartz, A. L. & Ciechanover, A. Targeting proteins for destruction by the ubiquitin system: implications for human pathobiology. Annu. Rev. Pharmacol. Toxicol.49, 73–96 (2009). CASPubMedGoogle Scholar
  13. Pohl, C. & Dikic, I. Cellular quality control by the ubiquitin-proteasome system and autophagy. Science366, 818–822 (2019). CASPubMedGoogle Scholar
  14. Ryan, C. J. et al. High-resolution network biology: connecting sequence with function. Nat. Rev. Genet.14, 865–879 (2013). CASPubMedPubMed CentralGoogle Scholar
  15. Mann, M. & Jensen, O. N. Proteomic analysis of post-translational modifications. Nat. Biotechnol.21, 255–261 (2003). CASPubMedGoogle Scholar
  16. Alberts, B. et al. Molecular Biology of the Cell (Garland Press, 2002).
  17. Aebersold, R. et al. How many human proteoforms are there? Nat. Chem. Biol.14, 206–214 (2018). CASPubMedPubMed CentralGoogle Scholar
  18. Salovska, B. et al. Isoform-resolved correlation analysis between mRNA abundance regulation and protein level degradation. Mol. Syst. Biol.16, e9170 (2020). CASPubMedPubMed CentralGoogle Scholar
  19. Kempfer, R. & Pombo, A. Methods for mapping 3D chromosome architecture. Nat. Rev. Genet.21, 207–226 (2019). PubMedGoogle Scholar
  20. Goodwin, S., McPherson, J. D. & McCombie, W. R. Coming of age: ten years of next-generation sequencing technologies. Nat. Rev. Genet.17, 333–351 (2016). CASPubMedGoogle Scholar
  21. Stark, R., Grzelak, M. & Hadfield, J. RNA sequencing: the teenage years. Nat. Rev. Genet.20, 631–656 (2019). CASPubMedGoogle Scholar
  22. Aebersold, R. & Mann, M. Mass-spectrometric exploration of proteome structure and function. Nature537, 347–355 (2016). This review provides an overview of mass spectrometry-based proteomic technologies and their biomedical applications. CASPubMedGoogle Scholar
  23. Vogel, C. & Marcotte, E. M. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat. Rev. Genet.13, 227–232 (2012). CASPubMedPubMed CentralGoogle Scholar
  24. Liu, Y., Beyer, A. & Aebersold, R. On the dependency of cellular protein levels on mRNA abundance. Cell165, 535–550 (2016). CASPubMedGoogle Scholar
  25. Fortelny, N., Overall, C. M., Pavlidis, P. & Freue, G. V. C. Can we predict protein from mRNA levels? Nature547, E19–E20 (2017). This study questions the utility of protein-to-mRNA ratios and argues that these are likely to be of little use when one is attempting to make within-gene estimates of protein levels from mRNA. CASPubMedGoogle Scholar
  26. Franks, A., Airoldi, E. & Slavov, N. Post-transcriptional regulation across human tissues. PLoS Comput. Biol.13, e1005535 (2017). PubMedPubMed CentralGoogle Scholar
  27. Gygi, S. P., Rochon, Y., Franza, B. R. & Aebersold, R. Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol.19, 1720–1730 (1999). One of the original studies attempting to correlate proteins with mRNA abundance. Gygi and colleagues note that coverage bias may greatly affect across-gene correlations. CASPubMedPubMed CentralGoogle Scholar
  28. Edfors, F. et al. Gene-specific correlation of RNA and protein levels in human cells and tissues. Mol. Syst. Biol.12, 883 (2016). PubMedPubMed CentralGoogle Scholar
  29. Zhang, B. et al. Proteogenomic characterization of human colon and rectal cancer. Nature513, 382–387 (2014). CASPubMedPubMed CentralGoogle Scholar
  30. Mertins, P. et al. Proteogenomics connects somatic mutations to signalling in breast cancer. Nature534, 55–62 (2016). CASPubMedPubMed CentralGoogle Scholar
  31. Zhang, H. et al. Integrated proteogenomic characterization of human high-grade serous ovarian cancer. Cell166, 755–765 (2016). CASPubMedPubMed CentralGoogle Scholar
  32. Huang, K.-L. et al. Proteogenomic integration reveals therapeutic targets in breast cancer xenografts. Nat. Commun.8, 14864 (2017). PubMedPubMed CentralGoogle Scholar
  33. Archer, T. C. et al. Proteomics, post-translational modifications, and integrative analyses reveal molecular heterogeneity within medulloblastoma subgroups. Cancer Cell34, 396–410.e8 (2018). CASPubMedPubMed CentralGoogle Scholar
  34. Mun, D.-G. et al. Proteogenomic characterization of human early-onset gastric cancer. Cancer Cell35, 111–124.e10 (2019). CASPubMedGoogle Scholar
  35. Vasaikar, S. et al. Proteogenomic analysis of human colon cancer reveals new therapeutic opportunities. Cell177, 1035–1049.e19 (2019). CASPubMedPubMed CentralGoogle Scholar
  36. Khan, Z. et al. Primate transcript and protein expression levels evolve under compensatory selection pressures. Science342, 1100–1104 (2013). CASPubMedPubMed CentralGoogle Scholar
  37. Battle, A. et al. Genomic variation. Impact of regulatory variation from RNA to protein. Science347, 664–667 (2015). This study looks at how mRNA variation, arising from germline DNA variation in a population of humans, is buffered at the translational and protein levels. CASPubMedGoogle Scholar
  38. Chick, J. M. et al. Defining the consequences of genetic variation on a proteome-wide scale. Nature534, 500–505 (2016). CASPubMedPubMed CentralGoogle Scholar
  39. Wang, D. et al. A deep proteome and transcriptome abundance atlas of 29 healthy human tissues. Mol. Syst. Biol.15, e8503 (2019). PubMedPubMed CentralGoogle Scholar
  40. Ankney, J. A., Astor Ankney, J., Muneer, A. & Chen, X. Relative and absolute quantitation in mass spectrometry–based proteomics. Annu. Rev. Anal. Chem.11, 49–77 (2018). This review addresses the pros and cons of different absolute and relative proteomic quantification methods. CASGoogle Scholar
  41. Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods5, 621–628 (2008). CASPubMedGoogle Scholar
  42. Fu, Y., Wu, P.-H., Beane, T., Zamore, P. D. & Weng, Z. Elimination of PCR duplicates in RNA-seq and small RNA-seq using unique molecular identifiers. BMC Genomics19, 531 (2018). PubMedPubMed CentralGoogle Scholar
  43. Benjamini, Y. & Speed, T. P. Summarizing and correcting the GC content bias in high-throughput sequencing. Nucleic Acids Res.40, e72 (2012). CASPubMedPubMed CentralGoogle Scholar
  44. Tang, H. et al. A computational approach toward label-free protein quantification using predicted peptide detectability. Bioinformatics22, e481–e488 (2006). CASPubMedGoogle Scholar
  45. Zimmer, D., Schneider, K., Sommer, F., Schroda, M. & Mühlhaus, T. Artificial intelligence understands peptide observability and assists with absolute protein quantification. Front. Plant. Sci.9, 1559 (2018). PubMedPubMed CentralGoogle Scholar
  46. Peng, M. et al. Protease bias in absolute protein quantitation. Nat. Methods9, 524–525 (2012). This study specifically interrogates intensity-based quantification methods in mass-spectrometry-based proteomics and how these may differ widely depending on the mode of enzyme digestion. CASPubMedGoogle Scholar
  47. Schwanhäusser, B. et al. Global quantification of mammalian gene expression control. Nature473, 337–342 (2011). This study combines metabolic pulse labelling and absolute quantification of both mRNAs and proteins with mathematical modelling to quantify the major stages of mammalian gene expression control. PubMedGoogle Scholar
  48. Li, J. J., Bickel, P. J. & Biggin, M. D. System wide analyses have underestimated protein abundances and the importance of transcription in mammals. PeerJ2, e270 (2014). PubMedPubMed CentralGoogle Scholar
  49. Jovanovic, M. et al. Dynamic profiling of the protein life cycle in response to pathogens. Science347, 1259038 (2015). This study integrates absolute quantification of mRNAs and proteins along with protein turnover information in the context of LPS stimulation using ordinary differential equations to comprehensively assess gene expression regulation. PubMedPubMed CentralGoogle Scholar
  50. Ahrné, E., Molzahn, L., Glatter, T. & Schmidt, A. Critical assessment of proteome-wide label-free absolute abundance estimation strategies. Proteomics13, 2567–2578 (2013). PubMedGoogle Scholar
  51. Zeiler, M., Straube, W. L., Lundberg, E., Uhlen, M. & Mann, M. A protein epitope signature tag (PrEST) library allows SILAC-based absolute quantification and multiplexed determination of protein copy numbers in cell lines. Mol. Cell. Proteom.11, O111.009613 (2012). Google Scholar
  52. Lin, C. Y. et al. Transcriptional amplification in tumor cells with elevated c-Myc. Cell151, 56–67 (2012). CASPubMedPubMed CentralGoogle Scholar
  53. Crick, F. Central dogma of molecular biology. Nature227, 561–563 (1970). This study provides the original postulate of the central dogma of molecular biology, not to be confused with gene expression in general. CASPubMedGoogle Scholar
  54. Cobb, M. 60 years ago, Francis Crick changed the logic of biology. PLoS Biol.15, e2003243 (2017). PubMedPubMed CentralGoogle Scholar
  55. Davidson, E. H. Emerging properties of animal gene regulatory networks. Nature468, 911–920 (2010). CASPubMedPubMed CentralGoogle Scholar
  56. Lindeboom, R. G. H. et al. Integrative multi-omics analysis of intestinal organoid differentiation. Mol. Syst. Biol.14, e8227 (2018). PubMedPubMed CentralGoogle Scholar
  57. Becker, K. et al. Quantifying post-transcriptional regulation in the development of Drosophila melanogaster. Nat. Commun.9, 4970 (2018). PubMedPubMed CentralGoogle Scholar
  58. Ingolia, N. T., Lareau, L. F. & Weissman, J. S. Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell147, 789–802 (2011). CASPubMedPubMed CentralGoogle Scholar
  59. Cheng, Z. et al. Differential dynamics of the mammalian mRNA and protein expression response to misfolding stress. Mol. Syst. Biol.12, 855 (2016). PubMedPubMed CentralGoogle Scholar
  60. Darzacq, X. et al. In vivo dynamics of RNA polymerase II transcription. Nat. Struct. Mol. Biol.14, 796–806 (2007). CASPubMedPubMed CentralGoogle Scholar
  61. Hausser, J., Mayo, A., Keren, L. & Alon, U. Central dogma rates and the trade-off between precision and economy in gene expression. Nat. Commun.10, 68 (2019). This study analyses the parametric landscape of gene expression across genes, investigating the overall strategy evolution has selected, for example, to regulate highly expressed genes. CASPubMedPubMed CentralGoogle Scholar
  62. Schwanhäusser, B., Wolf, J., Selbach, M. & Busse, D. Synthesis and degradation jointly determine the responsiveness of the cellular proteome. Bioessays35, 597–601 (2013). PubMedGoogle Scholar
  63. Beyer, A., Hollunder, J., Nasheuer, H.-P. & Wilhelm, T. Post-transcriptional expression regulation in the yeast Saccharomyces cerevisiae on a genomic scale. Mol. Cell. Proteomics3, 1083–1092 (2004). CASPubMedGoogle Scholar
  64. Zecha, J. et al. Peptide level turnover measurements enable the study of proteoform dynamics. Mol. Cell. Proteomics17, 974–992 (2018). CASPubMedPubMed CentralGoogle Scholar
  65. Kristensen, A. R., Gsponer, J. & Foster, L. J. Protein synthesis rate is the predominant regulator of protein expression during differentiation. Mol. Syst. Biol.9, 689 (2013). PubMedPubMed CentralGoogle Scholar
  66. Baum, K., Schuchhardt, J., Wolf, J. & Busse, D. Of gene expression and cell division time: a mathematical framework for advanced differential gene expression and data analysis. Cell Syst.9, 569–579 (2019). This study formalizes the role of cell cycle time in the context of gene expression. CASPubMedGoogle Scholar
  67. Wilhelm, M. et al. Mass-spectrometry-based draft of the human proteome. Nature509, 582–587 (2014). This study presents an in-depth proteomics and transcriptomics dataset of 12 tissues and is one of the first to posit that protein-to-mRNA ratios can be used to estimate absolute protein abundances from mRNA. CASPubMedGoogle Scholar
  68. Eraslan, B. et al. Quantification and discovery of sequence determinants of protein-per-mRNA amount in 29 human tissues. Mol. Syst. Biol.15, e8513 (2019). PubMedPubMed CentralGoogle Scholar
  69. Buszczak, M., Signer, R. A. J. & Morrison, S. J. Cellular differences in protein synthesis regulate tissue homeostasis. Cell159, 242–251 (2014). CASPubMedPubMed CentralGoogle Scholar
  70. Peshkin, L. et al. On the relationship of protein and mRNA dynamics in vertebrate embryonic development. Dev. Cell35, 383–394 (2015). CASPubMedPubMed CentralGoogle Scholar
  71. Xiao, H. et al. Differential proteomic analysis of human saliva using tandem mass tags quantification for gastric cancer detection. Sci. Rep.6, 22165 (2016). CASPubMedPubMed CentralGoogle Scholar
  72. Zhao, M. et al. A comprehensive analysis and annotation of human normal urinary proteome. Sci. Rep.7, 3024 (2017). PubMedPubMed CentralGoogle Scholar
  73. Cso˝sz, É. et al. Quantitative body fluid proteomics in medicine - a focus on minimal invasiveness. J. Proteomics153, 30–43 (2017). PubMedGoogle Scholar
  74. Geyer, P. E., Holdt, L. M., Teupser, D. & Mann, M. Revisiting biomarker discovery by plasma proteomics. Mol. Syst. Biol.13, 942 (2017). PubMedPubMed CentralGoogle Scholar
  75. Yao, C. et al. Genome-wide mapping of plasma protein QTLs identifies putatively causal genes and pathways for cardiovascular disease. Nat. Commun.9, 3268 (2018). PubMedPubMed CentralGoogle Scholar
  76. Meissner, F., Scheltema, R. A., Mollenkopf, H.-J. & Mann, M. Direct proteomic quantification of the secretome of activated immune cells. Science340, 475–478 (2013). CASPubMedGoogle Scholar
  77. Suhre, K. et al. Connecting genetic risk to disease end points through the human blood plasma proteome. Nat. Commun.8, 14357 (2017). CASPubMedPubMed CentralGoogle Scholar
  78. Moritz, C. P., Mühlhaus, T., Tenzer, S., Schulenborg, T. & Friauf, E. Poor transcript-protein correlation in the brain: negatively correlating gene products reveal neuronal polarity as a potential cause. J. Neurochem.149, 582–604 (2019). CASPubMedGoogle Scholar
  79. Zappulo, A. et al. RNA localization is a key determinant of neurite-enriched proteome. Nat. Commun.8, 583 (2017). PubMedPubMed CentralGoogle Scholar
  80. Holt, C. E., Martin, K. C. & Schuman, E. M. Local translation in neurons: visualization and function. Nat. Struct. Mol. Biol.26, 557–566 (2019). CASPubMedGoogle Scholar
  81. Chekulaeva, M. & Landthaler, M. Eyes on translation. Mol. Cell63, 918–925 (2016). CASPubMedGoogle Scholar
  82. Sysoev, V. O. et al. Global changes of the RNA-bound proteome during the maternal-to-zygotic transition in Drosophila. Nat. Commun.7, 12128 (2016). CASPubMedPubMed CentralGoogle Scholar
  83. Stoeckius, M. et al. Global characterization of the oocyte-to-embryo transition in Caenorhabditis elegans uncovers a novel mRNA clearance mechanism. EMBO J.33, 1751–1766 (2014). CASPubMedPubMed CentralGoogle Scholar
  84. Koch, S., Acebron, S. P., Herbst, J., Hatiboglu, G. & Niehrs, C. Post-transcriptional Wnt signaling governs epididymal sperm maturation. Cell163, 1225–1236 (2015). CASPubMedGoogle Scholar
  85. Liu, X. et al. Regulation of mitochondrial biogenesis in erythropoiesis by mTORC1-mediated protein translation. Nat. Cell Biol.19, 626–638 (2017). CASPubMedPubMed CentralGoogle Scholar
  86. Gautier, E.-F. et al. Comprehensive proteomic analysis of human erythropoiesis. Cell Rep.16, 1470–1484 (2016). CASPubMedPubMed CentralGoogle Scholar
  87. Nguyen, A. T. et al. UBE2O remodels the proteome during terminal erythroid differentiation. Science357, eaan0218 (2017). PubMedPubMed CentralGoogle Scholar
  88. Yanagitani, K., Juszkiewicz, S. & Hegde, R. S. UBE2O is a quality control factor for orphans of multiprotein complexes. Science357, 472–475 (2017). Nguyen et al. (2017) and Yanagitani et al. (2017) characterize the mechanism of action and role of UBE2O as a ubiquitin ligase responsible for clearing surplus protein complex subunits. CASPubMedPubMed CentralGoogle Scholar
  89. Mathieson, T. et al. Systematic analysis of protein turnover in primary cells. Nat. Commun.9, 689 (2018). PubMedPubMed CentralGoogle Scholar
  90. Dörrbaum, A. R., Kochen, L., Langer, J. D. & Schuman, E. M. Local and global influences on protein turnover in neurons and glia. eLife7, e34202 (2018). PubMedPubMed CentralGoogle Scholar
  91. Marguerat, S. et al. Quantitative analysis of fission yeast transcriptomes and proteomes in proliferating and quiescent cells. Cell151, 671–683 (2012). CASPubMedPubMed CentralGoogle Scholar
  92. Félix, M.-A. & Barkoulas, M. Pervasive robustness in biological systems. Nat. Rev. Genet.16, 483–496 (2015). PubMedGoogle Scholar
  93. Rogers, J. & Gibbs, R. A. Comparative primate genomics: emerging patterns of genome content and dynamics. Nat. Rev. Genet.15, 347–359 (2014). CASPubMedPubMed CentralGoogle Scholar
  94. Waszak, S. M. et al. Population variation and genetic control of modular chromatin architecture in humans. Cell162, 1039–1050 (2015). CASPubMedGoogle Scholar
  95. Raj, A., Peskin, C. S., Tranchina, D., Vargas, D. Y. & Tyagi, S. Stochastic mRNA synthesis in mammalian cells. PLoS Biol.4, e309 (2006). PubMedPubMed CentralGoogle Scholar
  96. Raser, J. M. & O’Shea, E. K. Control of stochasticity in eukaryotic gene expression. Science304, 1811–1814 (2004). CASPubMedPubMed CentralGoogle Scholar
  97. Kustatscher, G., Grabowski, P. & Rappsilber, J. Pervasive coexpression of spatially proximal genes is buffered at the protein level. Mol. Syst. Biol.13, 937 (2017). This study outlines how covariation in mRNA owing to chromosomal location of source genes is lost at the protein level. PubMedPubMed CentralGoogle Scholar
  98. Geiger, T., Cox, J. & Mann, M. Proteomic changes resulting from gene copy number variations in cancer cells. PLoS Genet.6, e1001090 (2010). This is the first systematic analysis showing that the levels of some proteins are resistant to DNA copy number changes in mammalian cell lines. PubMedPubMed CentralGoogle Scholar
  99. Stingele, S. et al. Global analysis of genome, transcriptome and proteome reveals the response to aneuploidy in human cells. Mol. Syst. Biol.8, 608 (2012). PubMedPubMed CentralGoogle Scholar
  100. Dephoure, N. et al. Quantitative proteomic analysis reveals posttranslational responses to aneuploidy in yeast. eLife3, e03023 (2014). PubMedPubMed CentralGoogle Scholar
  101. Gonçalves, E. et al. Widespread post-transcriptional attenuation of genomic copy-number variation in cancer. Cell Syst.5, 386–398.e4 (2017). This study presents a reanalysis of Clinical Proteomic Tumor Analysis Consortium (CPTAC) breast, ovarian and colorectal cancer studies and finds that ~20–30% of mRNA changes caused by aneuploidy are buffered at the protein level and further leverage this information to predict protein–protein interactions. PubMedPubMed CentralGoogle Scholar
  102. Liu, Y. et al. Systematic proteome and proteostasis profiling in human Trisomy 21 fibroblast cells. Nat. Commun.8, 1212 (2017). PubMedPubMed CentralGoogle Scholar
  103. Schlattl, A., Anders, S., Waszak, S. M., Huber, W. & Korbel, J. O. Relating CNVs to transcriptome data at fine resolution: assessment of the effect of variant size, type, and overlap with functional regions. Genome Res.21, 2004–2013 (2011). CASPubMedPubMed CentralGoogle Scholar
  104. Fehrmann, R. S. N. et al. Gene expression analysis identifies global gene dosage sensitivity in cancer. Nat. Genet.47, 115–125 (2015). This study demonstrates, across tens of thousands of microarray and RNA-seq samples, the direct and dosage-sensitive effects of somatic copy number alterations (aneuploidy) on mRNA and underlines almost no buffering between the DNA and mRNA levels. CASPubMedGoogle Scholar
  105. Grönlund, A., Lötstedt, P. & Elf, J. Transcription factor binding kinetics constrain noise suppression via negative feedback. Nat. Commun.4, 1864 (2013). PubMedGoogle Scholar
  106. Müller-McNicoll, M., Rossbach, O., Hui, J. & Medenbach, J. Auto-regulatory feedback by RNA-binding proteins. J. Mol. Cell Biol.11, 930–939 (2019). PubMedPubMed CentralGoogle Scholar
  107. Jumaa, H. & Nielsen, P. J. The splicing factor SRp20 modifies splicing of its own mRNA and ASF/SF2 antagonizes this regulation. EMBO J.16, 5077–5085 (1997). This is one of the early studies analysing the autoregulatory capability of many splicing factors. CASPubMedPubMed CentralGoogle Scholar
  108. Lareau, L. F., Inada, M., Green, R. E., Wengrod, J. C. & Brenner, S. E. Unproductive splicing of SR genes associated with highly conserved and ultraconserved DNA elements. Nature446, 926–929 (2007). CASPubMedGoogle Scholar
  109. de Bie, P. & Ciechanover, A. Ubiquitination of E3 ligases: self-regulation of the ubiquitin system via proteolytic and non-proteolytic mechanisms. Cell Death Differ.18, 1393–1402 (2011). PubMedPubMed CentralGoogle Scholar
  110. Signor, S. A. & Nuzhdin, S. V. The evolution of gene expression in cis and trans. Trends Genet.34, 532–544 (2018). CASPubMedPubMed CentralGoogle Scholar
  111. Bader, D. M. et al. Negative feedback buffers effects of regulatory variants. Mol. Syst. Biol.11, 785 (2015). PubMedPubMed CentralGoogle Scholar
  112. Battich, N., Stoeger, T. & Pelkmans, L. Control of transcript variability in single mammalian cells. Cell163, 1596–1610 (2015). CASPubMedGoogle Scholar
  113. Artieri, C. G. & Fraser, H. B. Evolution at two levels of gene expression in yeast. Genome Res.24, 411–421 (2014). CASPubMedPubMed CentralGoogle Scholar
  114. McManus, C. J., May, G. E., Spealman, P. & Shteyman, A. Ribosome profiling reveals post-transcriptional buffering of divergent gene expression in yeast. Genome Res.24, 422–430 (2014). CASPubMedPubMed CentralGoogle Scholar
  115. Taggart, J. C. & Li, G.-W. Production of protein-complex components is stoichiometric and lacks general feedback regulation in eukaryotes. Cell Syst.7, 580–589.e4 (2018). CASPubMedPubMed CentralGoogle Scholar
  116. Juszkiewicz, S. & Hegde, R. S. Quality control of orphaned proteins. Mol. Cell71, 443–457 (2018). CASPubMedPubMed CentralGoogle Scholar
  117. McShane, E. et al. Kinetic analysis of protein stability reveals age-dependent degradation. Cell167, 803–815.e21 (2016). CASPubMedGoogle Scholar
  118. Taggart, J. C., Zauber, H., Selbach, M., Li, G.-W. & McShane, E. Keeping the proportions of protein complex components in check. Cell Syst.10, 125–132 (2020). CASPubMedPubMed CentralGoogle Scholar
  119. Santaguida, S., Vasile, E., White, E. & Amon, A. Aneuploidy-induced cellular stresses limit autophagic degradation. Genes Dev.29, 2010–2021 (2015). CASPubMedPubMed CentralGoogle Scholar
  120. Santaguida, S. et al. Chromosome mis-segregation generates cell-cycle-arrested cells with complex karyotypes that are eliminated by the immune system. Dev. Cell41, 638–651.e5 (2017). CASPubMedPubMed CentralGoogle Scholar
  121. Stuart, T. & Satija, R. Integrative single-cell analysis. Nat. Rev. Genet.20, 257–272 (2019). CASPubMedGoogle Scholar
  122. Marx, V. A dream of single-cell proteomics. Nat. Methods16, 809–812 (2019). CASPubMedGoogle Scholar
  123. Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods14, 865–868 (2017). CASPubMedPubMed CentralGoogle Scholar
  124. Spitzer, M. H. & Nolan, G. P. Mass cytometry: single cells, many features. Cell165, 780–791 (2016). CASPubMedPubMed CentralGoogle Scholar
  125. Budnik, B., Levy, E., Harmange, G. & Slavov, N. SCoPE-MS: mass spectrometry of single mammalian cells quantifies proteome heterogeneity during cell differentiation. Genome Biol.19, 161 (2018). PubMedPubMed CentralGoogle Scholar
  126. Popovic, D., Koch, B., Kueblbeck, M., Ellenberg, J. & Pelkmans, L. Multivariate control of transcript to protein variability in single mammalian cells. Cell Syst.7, 398–411.e6 (2018). CASPubMedGoogle Scholar
  127. Albayrak, C. et al. Digital quantification of proteins and mRNA in single mammalian cells. Mol. Cell61, 914–924 (2016). CASPubMedGoogle Scholar
  128. Genshaf, A. S. et al. Multiplexed, targeted profiling of single-cell proteomes and transcriptomes in a single reaction. Genome Biol.17, 188 (2016). Google Scholar
  129. Peterson, V. M. et al. Multiplexed quantification of proteins and transcripts in single cells. Nat. Biotechnol.35, 936–939 (2017). CASPubMedGoogle Scholar
  130. Sopko, R. et al. Mapping pathways and phenotypes by systematic gene overexpression. Mol. Cell21, 319–330 (2006). CASPubMedGoogle Scholar
  131. Brennan, C. M. et al. Protein aggregation mediates stoichiometry of protein complexes in aneuploid cells. Genes Dev.33, 1031–1047 (2019). CASPubMedPubMed CentralGoogle Scholar
  132. Klosin, A. et al. Phase separation provides a mechanism to reduce noise in cells. Science367, 464–468 (2020). CASPubMedGoogle Scholar
  133. Nusinow, D. P. et al. Quantitative proteomics of the cancer cell line encyclopedia. Cell180, 387–402.e16 (2020). CASPubMedPubMed CentralGoogle Scholar
  134. Carter, S. L., Eklund, A. C., Kohane, I. S., Harris, L. N. & Szallasi, Z. A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nat. Genet.38, 1043–1048 (2006). CASPubMedGoogle Scholar
  135. Ben-David, U. et al. The landscape of chromosomal aberrations in breast cancer mouse models reveals driver-specific routes to tumorigenesis. Nat. Commun.7, 12160 (2016). CASPubMedPubMed CentralGoogle Scholar
  136. Gehre, M., Buccitelli, C., Diaz, N., Korbel, J. & Noh, K.-M. Efficient strategies to detect genome editing and integrity in CRISPR-Cas9 engineered ESCs. Preprint at bioRxivhttps://doi.org/10.1101/635151 (2019).
  137. Wang, J. et al. Proteome profiling outperforms transcriptome profiling for coexpression based gene function prediction. Mol. Cell. Proteom.16, 121–134 (2017). CASGoogle Scholar
  138. Lapek, J. D. Jr et al. Detection of dysregulated protein-association networks by high-throughput proteomics predicts cancer vulnerabilities. Nat. Biotechnol.35, 983–989 (2017). CASPubMedPubMed CentralGoogle Scholar
  139. Kustatscher, G. et al. Co-regulation map of the human proteome enables identification of protein functions. Nat. Biotechnol.37, 1361–1371 (2019). CASPubMedPubMed CentralGoogle Scholar
  140. Roumeliotis, T. I. et al. Genomic determinants of protein abundance variation in colorectal cancer cells. Cell Rep.20, 2201–2214 (2017). CASPubMedPubMed CentralGoogle Scholar
  141. Romanov, N. et al. Disentangling genetic and environmental effects on the proteotypes of individuals. Cell177, 1308–1318.e10 (2019). CASPubMedPubMed CentralGoogle Scholar
  142. Ori, A. et al. Spatiotemporal variation of mammalian protein complex stoichiometries. Genome Biol.17, 47 (2016). PubMedPubMed CentralGoogle Scholar
  143. Doll, S., Gnad, F. & Mann, M. The case for proteomics and phospho-proteomics in personalized cancer medicine. Proteomics Clin. Appl.13, e1800113 (2019). PubMedGoogle Scholar
  144. Welker, F. et al. Enamel proteome shows that Gigantopithecus was an early diverging pongine. Nature576, 262–265 (2019). CASPubMedPubMed CentralGoogle Scholar
  145. Olsen, J. V. et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell127, 635–648 (2006). CASPubMedGoogle Scholar
  146. Meyer, K. & Selbach, M. Quantitative affinity purification mass spectrometry: a versatile technology to study protein-protein interactions. Front. Genet.6, 237 (2015). PubMedPubMed CentralGoogle Scholar
  147. Yang, J., Wagner, S. A. & Beli, P. Illuminating spatial and temporal organization of protein interaction networks by mass spectrometry-based proteomics. Front. Genet.6, 344 (2015). PubMedPubMed CentralGoogle Scholar
  148. Dettmer, K., Aronov, P. A. & Hammock, B. D. Mass spectrometry-based metabolomics. Mass. Spectrom. Rev.26, 51–78 (2007). CASPubMedPubMed CentralGoogle Scholar
  149. Zelezniak, A. et al. Machine learning predicts the yeast metabolome from the quantitative proteome of kinase knockouts. Cell Syst.7, 269–283.e6 (2018). CASPubMedPubMed CentralGoogle Scholar
  150. Senft, D., Qi, J. & Ronai, Z. A. Ubiquitin ligases in oncogenic transformation and cancer therapy. Nat. Rev. Cancer18, 69–88 (2017). PubMedPubMed CentralGoogle Scholar
  151. Krönke, J. et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science343, 301–305 (2014). PubMedGoogle Scholar
  152. Lu, G. et al. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science343, 305–309 (2014). CASPubMedGoogle Scholar
  153. Chamberlain, P. P. & Hamann, L. G. Development of targeted protein degradation therapeutics. Nat. Chem. Biol.15, 937–944 (2019). CASPubMedGoogle Scholar
  154. Tang, Y.-C., Williams, B. R., Siegel, J. J. & Amon, A. Identification of aneuploidy-selective antiproliferation compounds. Cell144, 499–512 (2011). CASPubMedPubMed CentralGoogle Scholar
  155. Ben-David, U. & Amon, A. Context is everything: aneuploidy in cancer. Nat. Rev. Genet.21, 44–62 (2020). CASPubMedGoogle Scholar
  156. Hasin, Y., Seldin, M. & Lusis, A. Multi-omics approaches to disease. Genome Biol.18, 83 (2017). PubMedPubMed CentralGoogle Scholar
  157. Vitrinel, B. et al. Exploiting interdata relationships in next-generation proteomics analysis. Mol. Cell. Proteomics18, S5–S14 (2019). CASPubMedPubMed CentralGoogle Scholar
  158. Dölken, L. et al. High-resolution gene expression profiling for simultaneous kinetic parameter analysis of RNA synthesis and decay. RNA14, 1959–1972 (2008). PubMedPubMed CentralGoogle Scholar
  159. Herzog, V. A. et al. Thiol-linked alkylation of RNA to assess expression dynamics. Nat. Methods14, 1198–1204 (2017). CASPubMedPubMed CentralGoogle Scholar
  160. Mann, M. Functional and quantitative proteomics using SILAC. Nat. Rev. Mol. Cell Biol.7, 952–958 (2006). CASPubMedGoogle Scholar
  161. Selbach, M. et al. Widespread changes in protein synthesis induced by microRNAs. Nature455, 58–63 (2008). CASPubMedGoogle Scholar
  162. Schwanhäusser, B., Gossen, M., Dittmar, G. & Selbach, M. Global analysis of cellular protein translation by pulsed SILAC. Proteomics9, 205–209 (2009). PubMedGoogle Scholar
  163. Doherty, M. K., Hammond, D. E., Clague, M. J., Gaskell, S. J. & Beynon, R. J. Turnover of the human proteome: determination of protein intracellular stability by dynamic SILAC. J. Proteome Res.8, 104–112 (2009). CASPubMedGoogle Scholar
  164. Boisvert, F.-M. et al. A quantitative spatial proteomics analysis of proteome turnover in human cells. Mol. Cell. Proteomics11, M111.011429 (2012). PubMedGoogle Scholar
  165. Savitski, M. M. et al. Multiplexed proteome dynamics profiling reveals mechanisms controlling protein homeostasis. Cell173, 260–274.e25 (2018). CASPubMedPubMed CentralGoogle Scholar
  166. Dieterich, D. C., Link, A. J., Graumann, J., Tirrell, D. A. & Schuman, E. M. Selective identification of newly synthesized proteins in mammalian cells using bioorthogonal noncanonical amino acid tagging (BONCAT). Proc. Natl Acad. Sci. USA103, 9482–9487 (2006). CASPubMedPubMed CentralGoogle Scholar
  167. Eichelbaum, K., Winter, M., Berriel Diaz, M., Herzig, S. & Krijgsveld, J. Selective enrichment of newly synthesized proteins for quantitative secretome analysis. Nat. Biotechnol.30, 984–990 (2012). CASPubMedGoogle Scholar
  168. Brar, G. A. & Weissman, J. S. Ribosome profiling reveals the what, when, where and how of protein synthesis. Nat. Rev. Mol. Cell Biol.16, 651–664 (2015). CASPubMedPubMed CentralGoogle Scholar
  169. van Heesch, S. et al. The translational landscape of the human heart. Cell178, 242–260.e29 (2019). PubMedGoogle Scholar
  170. Calviello, L. et al. Detecting actively translated open reading frames in ribosome profiling data. Nat. Methods13, 165–170 (2016). CASPubMedGoogle Scholar
  171. Diament, A. et al. The extent of ribosome queuing in budding yeast. PLoS Comput. Biol.14, e1005951 (2018). PubMedPubMed CentralGoogle Scholar
  172. Riba, A. et al. Protein synthesis rates and ribosome occupancies reveal determinants of translation elongation rates. Proc. Natl Acad. Sci. USA116, 15023–15032 (2019). CASPubMedPubMed CentralGoogle Scholar
  173. Duncan, C. D. S. & Mata, J. Effects of cycloheximide on the interpretation of ribosome profiling experiments in Schizosaccharomyces pombe. Sci. Rep.7, 10331 (2017). PubMedPubMed CentralGoogle Scholar
  174. Ingolia, N. T. Tracking the missing footprints of idle ribosomes. Cell Syst.4, 583–584 (2017). CASPubMedGoogle Scholar
  175. Liu, T.-Y. et al. Time-resolved proteomics extends ribosome profiling-based measurements of protein synthesis dynamics. Cell Syst.4, 636–644.e9 (2017). CASPubMedPubMed CentralGoogle Scholar
  176. Anscombe, F. J. Graphs in statistical analysis. Am. Stat.27, 17–21 (1973). Google Scholar

Acknowledgements

The authors acknowledge the extensive contributions of the scientific community to the topic of this Review and apologize for being unable to reference all pertinent articles. The authors thank P. Mertins, J. Wolf, D. Harnett (all from the Max Delbrück Center for Molecular Medicine) and E. McShane (Harvard Medical School) for feedback. They also thank T. Melder (Max Delbrück Center for Molecular Medicine) for help with the chemical structures and all other members of the Selbach laboratory for helpful discussions.